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INTRODUCTION

In this paper we consider the problem of model-
ing curves via interpolation based on the so-called 
discrete reduced data Qm = (q0, q1, ..., qm) (for i ∈ 

 

 
{0, 1, ..., m}), where qi ∈ 

 

 Rn. The term reduced 
data corresponds to the ordered sequence of m+1 
input points in Rn stripped from the tabular param-
eters 
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compensates for the loss of the information carried by the reduced data.
We also present the application of the above schemes for fitting non-
parametric data in computer graphics (light-source motion rendering),
in computer vision (image segmentation) and in physics (high velocity
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cisely we obtain reduced data by sampling parametric curve γ : [0, T ] → Rn with
γ(ti) = qi (where 0 ≤ i ≤ m) in arbitrary Euclidian space without provision of
the corresponding parameters {ti}mi=0 (where t0 = 0 < t1 < t2 < ... < tm = T <
∞), usually referred in the literature as interpolation knots. To perform any in-
terpolation scheme we need first to estimate the unknown knots ti. One approach
is to choose the parameters {t̂i}mi=0 ∈ [0, T̂ ]m+1 blindly, by assigning them e.g.
natural numbers in the uniform manner: t̂i = i. However, this simplistic method
frequently renders surprisingly undesired results. Following discussion from [4]
and [6] there exists a strong indication, that method of guessing interpolation
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should incorporate the geometry of the distribu-
tion of sampling points Qm. Such possible method 
is analyzed in [5] and [8], and is later referred to 
in our paper as cumulative chord knot evaluation 
method. In this approach we compensate for the 
loss of the information carried by the reduced data 
by calcu lating the distance between consecutive 
different points {qi, qi+1} and use the cumulative 
distance as respective values for the unknown 
knots: i.e. 

2 Reduced Data for Curve Modeling - Applications

knots {ti}mi=0 should incorporate the geometry of the distribution of sampling
points Qm. Such possible method is analyzed in [4] and [6], and later referred
in our paper as cumulative chord knot evaluation method. In this approach we
compensate for the loss of the information carried by the reduced data by calcu-
lating the distance between consecutive points {qi, qi+1} and use the cumulative
distance as values for the unknown knots: i.e. t̂0 = 0 and t̂i+1 = ‖qi+1 − qi‖+ t̂i.
The problem of fitting non-parametric data is not only an abstract mathemati-
cal concept, but can be applied in real life. The latter happens e.g. in computer
graphics (motion rendering), computer vision (image segmentation) and other
applications such as medical image processing or high-velocity particle trajec-
tory modeling. Such examples are implemented here. Presented method can be
also applied in modeling of differet technical processes, i.e. [8] or [9, 10].

1.1 Concepts

Spline interpolation is a form of interpolation, where the interpolant is a special
type of piecewise polynomial called a spline (see e.g. [11]). A cubic spline is a
piecewise cubic polynomial (see [1]; Chapt. 4) of class C2. The essential idea is
to fit the data γ(t0),γ(t2),...,γ(tm) with a piecewise cubic S : [0, T ] → Rn of the
form:

S(t) =




P0(t); t0 ≤ t ≤ t1
...

...
Pm−1(t), tm−1 ≤ t ≤ tm

(1)

where each Pi : [ti, ti+1] → Rn is a third degree polynomial defined by

Pi(t) = ai(t− ti)
3 + bi(t− ti)

2 + ci(t− ti) + di, (2)

with constant vectors ai, bi, ci, di ∈ Rn. Again by [1] (see Chapt. 4) the latter
coefficients (with the aid of Newton’s divided differences) read as:

di = Pi(ti) = γ(ti), ci = P ′
i (ti) = si,

bi = P ′′
i (ti)/2 = [ti, ti, ti+1]γ −∆ti[ti, ti, ti+1, ti+1]γ,

= ([ti, ti+1]γ − si)/∆ti − ai∆ti,

ai = P ′′′
i (ti)/6 = (si + si+1 − 2[ti, ti+1]γ)/(∆ti)

2,

where si = γ̇(ti) and ∆ti = ti+1 − ti. There are two possible cases here: i.e.
si are known (Hermite interpolation) and si are unknown (a common case in
practice). We consider here the second case. In doing so, we recall that values
of si for i = 1, ...,m − 1 can be derived from: P ′′

i (ti+1) = P ′′
i+1(ti+1) (see also

[1]). If s0 and sm are given then we deal with the so-called complete spline.
On the other hand, if s0 and sm are also unknown, we can add constraints
γ̈(t0) = γ̈(tm) = 0. Such boundary conditions render the so-called natural splines
with P ′′

0 (t0) = P ′′
i−1(tm) = 0. The natural spline determines the smoothest of all

possible interpolating curves in the sense that it minimizes the integral of the
square of the second derivative (see [1]).

. The 
problem of fitting non-parametric data is not only 
an abstract mathemati cal concept, but can be ap-
plied in real life. The latter happens e.g. in com-
puter graphics (motion rendering), computer vi-
sion (image segmentation) and other applications 
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such as medical image processing or high-velocity 
particle trajec tory modeling. Such examples are 
implemented here. The presented method can also 
be applied in modeling of different technical pro-
cesses, i.e. [6] or [7, 9].

Concepts

Spline interpolation is a form of interpola-
tion where the interpolant is a special type of 
piecewise polynomial called a spline (see e.g. 
[11]). A cubic spline is a piecewise cubic poly-
nomial (see [2]) of class C2. The essential idea is 
to fit the data γ(t0), γ(t2), ..., γ(tm) with a piecewise 
cubic S : [0, T] → Rn of the form:

     

2 Reduced Data for Curve Modeling - Applications

knots {ti}mi=0 should incorporate the geometry of the distribution of sampling
points Qm. Such possible method is analyzed in [4] and [6], and later referred
in our paper as cumulative chord knot evaluation method. In this approach we
compensate for the loss of the information carried by the reduced data by calcu-
lating the distance between consecutive points {qi, qi+1} and use the cumulative
distance as values for the unknown knots: i.e. t̂0 = 0 and t̂i+1 = ‖qi+1 − qi‖+ t̂i.
The problem of fitting non-parametric data is not only an abstract mathemati-
cal concept, but can be applied in real life. The latter happens e.g. in computer
graphics (motion rendering), computer vision (image segmentation) and other
applications such as medical image processing or high-velocity particle trajec-
tory modeling. Such examples are implemented here. Presented method can be
also applied in modeling of differet technical processes, i.e. [8] or [9, 10].

1.1 Concepts

Spline interpolation is a form of interpolation, where the interpolant is a special
type of piecewise polynomial called a spline (see e.g. [11]). A cubic spline is a
piecewise cubic polynomial (see [1]; Chapt. 4) of class C2. The essential idea is
to fit the data γ(t0),γ(t2),...,γ(tm) with a piecewise cubic S : [0, T ] → Rn of the
form:

S(t) =





P0(t); t0 ≤ t ≤ t1
...

...
Pm−1(t), tm−1 ≤ t ≤ tm

(1)

where each Pi : [ti, ti+1] → Rn is a third degree polynomial defined by

Pi(t) = ai(t− ti)
3 + bi(t− ti)

2 + ci(t− ti) + di, (2)

with constant vectors ai, bi, ci, di ∈ Rn. Again by [1] (see Chapt. 4) the latter
coefficients (with the aid of Newton’s divided differences) read as:

di = Pi(ti) = γ(ti), ci = P ′
i (ti) = si,

bi = P ′′
i (ti)/2 = [ti, ti, ti+1]γ −∆ti[ti, ti, ti+1, ti+1]γ,

= ([ti, ti+1]γ − si)/∆ti − ai∆ti,

ai = P ′′′
i (ti)/6 = (si + si+1 − 2[ti, ti+1]γ)/(∆ti)

2,

where si = γ̇(ti) and ∆ti = ti+1 − ti. There are two possible cases here: i.e.
si are known (Hermite interpolation) and si are unknown (a common case in
practice). We consider here the second case. In doing so, we recall that values
of si for i = 1, ...,m − 1 can be derived from: P ′′

i (ti+1) = P ′′
i+1(ti+1) (see also

[1]). If s0 and sm are given then we deal with the so-called complete spline.
On the other hand, if s0 and sm are also unknown, we can add constraints
γ̈(t0) = γ̈(tm) = 0. Such boundary conditions render the so-called natural splines
with P ′′

0 (t0) = P ′′
i−1(tm) = 0. The natural spline determines the smoothest of all

possible interpolating curves in the sense that it minimizes the integral of the
square of the second derivative (see [1]).
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si are known (Hermite interpolation) and si are unknown (a common case in
practice). We consider here the second case. In doing so, we recall that values
of si for i = 1, ...,m − 1 can be derived from: P ′′

i (ti+1) = P ′′
i+1(ti+1) (see also

[1]). If s0 and sm are given then we deal with the so-called complete spline.
On the other hand, if s0 and sm are also unknown, we can add constraints
γ̈(t0) = γ̈(tm) = 0. Such boundary conditions render the so-called natural splines
with P ′′

0 (t0) = P ′′
i−1(tm) = 0. The natural spline determines the smoothest of all

possible interpolating curves in the sense that it minimizes the integral of the
square of the second derivative (see [1]).
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parametric data (i.e. collection of points {qi}mi=0, where qi ∈ Rn). The
first approach (uniform evaluation) is based on blind guess in which knots
{t̂i}mi=0 are chosen uniformly. The second approach (cumulative chord
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points. More precisely the difference t̂i+1 − t̂i is equal to the Euclidean
distance between data points qi+1 and qi. The second method partially
compensates for the loss of the information carried by the reduced data.
We also present the application of the above schemes for fitting non-
parametric data in computer graphics (light-source motion rendering),
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particles trajectory modeling). Though experiments are conducted for
points in R2 and R3 the entire method is equally applicable in Rn.
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1 Introduction

In this paper we consider the problem of modeling curves via interpolation based
on the so-called discrete reduced data Qm = (q0, q1, ..., qm) (for i ∈ {0, 1, ...,m}),
where qi ∈ Rn. The term reduced data corresponds to the ordered sequence of
m+1 input points in Rn stripped from the tabular parameters {ti}mi=0. More pre-
cisely we obtain reduced data by sampling parametric curve γ : [0, T ] → Rn with
γ(ti) = qi (where 0 ≤ i ≤ m) in arbitrary Euclidian space without provision of
the corresponding parameters {ti}mi=0 (where t0 = 0 < t1 < t2 < ... < tm = T <
∞), usually referred in the literature as interpolation knots. To perform any in-
terpolation scheme we need first to estimate the unknown knots ti. One approach
is to choose the parameters {t̂i}mi=0 ∈ [0, T̂ ]m+1 blindly, by assigning them e.g.
natural numbers in the uniform manner: t̂i = i. However, this simplistic method
frequently renders surprisingly undesired results. Following discussion from [4]
and [6] there exists a strong indication, that method of guessing interpolation
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a scheme based on non-parametric interpolation, 
careful guessing of the knots 
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2 Non-parametric Interpolation and Knot Evaluation
Methods

There exist some practical problems, while dealing with the incomplete data
set. We can consider many problems, where sequence of points Qm interpolates
the unknown curve γ with no provision of knot parameters {ti}mi=0. Such task is
coined as fitting the reduced data Qm and any interpolation scheme based on such
data is called non-parametric interpolation. In order to apply any scheme based
on non-parametric interpolation, the careful guessing of the knots {t̂i}mi=0 ∈
[0, T̂ ]m+1 needs to be made so that the resulting interpolant γ̃ (here γ̃ = S, see
Eq. (1)) yields the best possible orders of convergence - see e.g. [4] and [6] for
the analysis of C0 piecewise-cubics and piecewise-quadratics or see [5] or [3] for
C1 or C2 piecewise-cubics, respectively.

2.1 Uniform Knot Evaluation Method

The simplest and the most natural fashion of choosing the knots is to approxi-
mate the unknown {ti}mi=0 ∈ [0, T ]m+1 in the uniform manner:

t̂i = i, (3)

with T̂ = m. The potential problems in selecting {t̂i}mi=0 blindly are illustrated
in Fig. 1 and Fig. 2. We present here interpolation problems, that can arise while
reproducing the sector of the circle. We specify two different set of points qi. In
the case, when the points are distributed in the regular, uniform manner the
uniform evaluation method, not surprisingly, is able to reproduce the curve γ
very well (see Fig. 1). But in the case, when points are placed in irregular intervals
along the circle, strong deviations from the original curve can be observed (see
Fig. 2).

(a) (b)

Fig. 1. Cubic spline interpolation with (a) uniform knot evaluation method (red line)
and (b) cumulative chord knot evaluation method for uniformly distributed points.
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Fig. 1.  Cubic spline interpolation with (a) a uniform 
knot evaluation method (red line) and (b) a 
cumulative chord knot evaluation method for 
uniformly distributed points
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4 Reduced Data for Curve Modeling - Applications

(a) (b)

Fig. 2. Cubic spline interpolation with (a) uniform knot evaluation (red line) and (b)
cumulative chord knot evaluation for points distributed in irregular fashion.

2.2 Cumulative Chord Knot Evaluation Method

Following [4] or [6] instead of choosing the knots blindly (e.g. as by (3)) we can
assign to them the values of the cumulative distance between the interpolated
points:

t̂0 = 0, t̂i+1 = ‖qi+1 − qi‖+ t̂i, (4)

for i = 0, 1, ...,m− 1 and T̂ =
∑m−1

i=0 ‖qi+1 − qi‖, where ‖ · ‖ denotes a standard
Euclidean norm in Rn. Formula (4) for estimating knots ti takes into account
the geometrical distribution of the points Qm for an arbitrary dimensions, which
makes our procedure usable for any non-parametric interpolation problem. The
results of the interpolation of the points placed on the sector of the circle can
be compared in Fig. 1 (for uniformly distributed points) and in Fig. 2 (for data
distributed in irregular manner).

2.3 Comparison of Knot Evaluation Methods - Examples

Following experiments performed here (see Fig. 3) certain facts should be em-
phasized:

1. If the number of interpolation pointsQm is small and the data are distributed
in highly irregular manner the uniform method creates irregularities in tra-
jectory estimation, while the curve obtained by chord evaluation method
maintains plain and smooth shape.

2. If the data are distributed in the uniform manner then both methods work
equally well, since uniform distribution of knots reflects uniform distribution
of the data.

3. If the number of points Qm is large then the results from both methods
appear to be very similar, but in fact the convergence order of the approxi-
mation to the trajectory is not fast for uniform knot evaluation method and
would give big errors while estimating the length of the curve [4] or [6]. This
does not happen with item 1 from above.

Fig. 2.  Cubic spline interpolation with (a) a uniform 
knot evaluation (red line) and (b) a cumulative 
chord knot evaluation for points distributed in 
irregular fashion
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Euclidean norm in Rn. Formula (4) for estimating knots ti takes into account
the geometrical distribution of the points Qm for an arbitrary dimensions, which
makes our procedure usable for any non-parametric interpolation problem. The
results of the interpolation of the points placed on the sector of the circle can
be compared in Fig. 1 (for uniformly distributed points) and in Fig. 2 (for data
distributed in irregular manner).

2.3 Comparison of Knot Evaluation Methods - Examples

Following experiments performed here (see Fig. 3) certain facts should be em-
phasized:

1. If the number of interpolation pointsQm is small and the data are distributed
in highly irregular manner the uniform method creates irregularities in tra-
jectory estimation, while the curve obtained by chord evaluation method
maintains plain and smooth shape.

2. If the data are distributed in the uniform manner then both methods work
equally well, since uniform distribution of knots reflects uniform distribution
of the data.

3. If the number of points Qm is large then the results from both methods
appear to be very similar, but in fact the convergence order of the approxi-
mation to the trajectory is not fast for uniform knot evaluation method and
would give big errors while estimating the length of the curve [4] or [6]. This
does not happen with item 1 from above.

 denotes a standard Euclidean norm in 
Rn. Formula (4) for estimating knots ti takes into 
account the geometrical distribution of the points 
Qm for an arbitrary dimensions, what makes our 
procedure usable for any non-parametric interpo-
lation problem. The results of the interpolation of 
the points placed on the sector of the circle can be 
compared in Figure 1 (for uniformly distributed 
points) and in Figure 2 (for data distributed in ir-
regular manner).

Comparison of Knot Evaluation Methods  
– Examples 

Following experiments performed here (see 
Figure 3) certain facts should be emphasized: 
1.  If the number of interpolation points Qm is 

small and the data are distributed in highly ir-
regular manner the uniform method creates ir-
regularities in trajectory estimation, while the 
curve obtained by chord evaluation method 
maintains plain and smooth shape. 

2.  If the data are distributed in the uniform man-
ner then both methods work equally well, 
since uniform distribution of knots reflects 
uniform distribution of the data.

3.  If the number of points Qm is large then the 
results from both methods appear to be very 
similar, but in fact the convergence order of 
the approximation to the trajectory is not fast 
for uniform knot evaluation method and would 
give big errors while estimating the length of 
the curve [5] or [8]. This does not happen with 
item 1 from above.

For data distributed in the uniform manner 
even for simple guess 
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Fig. 3. Cubic spline interpolation using both knot evaluation methods: uniform (red
line) and cumulative chord (green line). Example scenarios: (a) number of interpolation
points is small and the data are distributed in highly irregular manner, (b) data are
distributed in the uniform manner, (c) number of points is large.

For data distributed in the uniform manner even for simple guess t̂i = i we
obtain desired results. However, there are some problems for which we do not
have control over specifying interpolation points, or even if we have, we want to
specify only small collection of points. In the latter case to correctly reproduce
the curve we need to choose more points in the area where the curve is changing
rapidly, than in places where it remain steady. Such procedure would result in
increasing density of points in some regions, yielding in non-uniformly distributed
data.

3 Sphere Illumination (Computer Graphics)

The main goal of the sphere illumination module is to present the estimation of
the trajectory of the light-source movement on the basis of a sparse sequence
of observed frames, which are defined on the basis of the position of the light-
source. Each frame is created by illuminating the same three dimensional object
in the same place in space by light-source. Frames differ from each other only by
the assigned a place in sequence and the position of a source of light in 3D space.
The sphere illumination module estimates the position of a source of light in an
exact number of frames placed between each frame of the input data. Therefore
the resulting sequence of frames consists of the initial set of frames and the set
of estimated frames forming altogether the estimation of the movement of the
source of light. For sphere illumination, Phong reflection model [7] is used. To
calculate the intensity of each pixel we apply:

I = Ia + Id + Is,

where Ia is the intensity of ambient colour of the pixel, the Id is the intensity of
colour for diffuse reflection of light at the pixel and Is is the intensity of colour
for specular reflection of light at the pixel. The ambient colour parameters are
constant for a particular object and does not depend on the position of observer
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which we do not have control over specifying in-
terpolation points, or even if we have, we want 
to specify only small collection of points. In the 
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pixel, the Id is the intensity of colour for diffuse 
reflection of light at the pixel and Is is the inten-

Fig. 3. Cubic spline interpolation using both knot evaluation methods: uniform (red line) and cumulative chord 
(green line). Example scenarios: (a) the number of interpolation points is small and the data are distributed in 
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Fig. 3. Cubic spline interpolation using both knot evaluation methods: uniform (red
line) and cumulative chord (green line). Example scenarios: (a) number of interpolation
points is small and the data are distributed in highly irregular manner, (b) data are
distributed in the uniform manner, (c) number of points is large.
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the curve we need to choose more points in the area where the curve is changing
rapidly, than in places where it remain steady. Such procedure would result in
increasing density of points in some regions, yielding in non-uniformly distributed
data.
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of observed frames, which are defined on the basis of the position of the light-
source. Each frame is created by illuminating the same three dimensional object
in the same place in space by light-source. Frames differ from each other only by
the assigned a place in sequence and the position of a source of light in 3D space.
The sphere illumination module estimates the position of a source of light in an
exact number of frames placed between each frame of the input data. Therefore
the resulting sequence of frames consists of the initial set of frames and the set
of estimated frames forming altogether the estimation of the movement of the
source of light. For sphere illumination, Phong reflection model [7] is used. To
calculate the intensity of each pixel we apply:
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where Ia is the intensity of ambient colour of the pixel, the Id is the intensity of
colour for diffuse reflection of light at the pixel and Is is the intensity of colour
for specular reflection of light at the pixel. The ambient colour parameters are
constant for a particular object and does not depend on the position of observer
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sity of colour for specular reflection of light at the 
pixel. The ambient colour parameters are constant 
for a particular object and do not depend on the 
position of the observer and the position of light-
source. Therefore, the equation for the ambient 
property is of a form

Ia = ka ,
where ka is a constant value of colour intensity. 
The Id is the diffuse property of the material. The 
basic form of an equation for the Id intensity of 
diffuse compound of colour for a given pixel is

Ia = ka · cosϑ ,
where 
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and the position of light-source. Therefore the equation for the ambient property
is of a form

Ia = ka,

where ka is a constant value of colour intensity. The Id is the diffuse property
of the material. The basic form of an equation for the Id intensity of diffuse
compound of colour for a given pixel is

Id = kd · cosϑ,

where kRd is a constant value of the diffuse property and ϑ is the angle between
the surface normal and the vector pointing from the surface point to the light
source. The Is is the specular property of the material. The basic form of an
equation for the Is intensity of specular compound of colour for a given pixel is

Is = ks · (cosϕ)p,

where ks is a constant value of specular property of a material, which is illumi-
nated by the white light, p determines the size of the highlight spot and ϕ is
an angle between the vector pointing from the specified point to the position of
observer and the ideal reflection vector.

3.1 Experimental Concept

In the sphere illumination model we implemented two different knot evaluation
methods for determining the trajectory of the light-source, namely uniform and
cumulative chord. The trajectory is obtained by interpolating the curve through
specified points in the three dimensional space (see Fig. 4). The experimental
task was to study the differences between methods simulating the sphere illumi-
nation by the moving light-source, where the light-source travels with constant
velocity.

3.2 Example

We prepared a set of input data consisting of points shown in Tab. 1. Those
input data points define the position of the light-source, which illuminated the
object in each of frames. For this set of coordinates we simulated the movement
of the light-source applying both knots evaluation methods (see Eqs. (3) and
(4)). The trajectories of the light-source for both methods are shown in Fig.
4. More precisely, Fig. 4 (a) and 4 (b) present the same set of frames, which
were an input for interpolation task. However, the images do not exactly match,
as the scale on those picture differs. This difference originates from significant
differences in coordinates of estimated points on trajectories. Algorithms for
Phong illumination model and spline interpolation are applied in exactly the
same fashion. As a result we obtained two different sequences of images for the
same frame sequences within the whole resulting set of frames. Fig. 5 presents
frames between 8 and 13 (row ordered) of the set obtained for uniform evaluation
of knots. Fig. 6 presents the same set of frames obtained for evaluation of knots
based on the length of chord.

 is a constant value of the diffuse prop-
erty and ϑ is the angle between the surface normal 
and the vector pointing from the surface point to 
the light source. The Is is the specular property of 
the material. The basic form of the equation for 
the Is intensity of specular compound of colour 
for a given pixel is

Ia = ka · (cosφ)p,
where ks is a constant value of specular property 
of a material, which is illumi nated by the white 
light, p determines the size of the highlight spot 
and φ is an angle between the vector pointing 
from the specified point to the position of the ob-
server and the ideal reflection vector.

Experimental Concept

In the sphere illumination model we imple-
mented two different knot evaluation methods 
for determining the trajectory of the light-source, 
namely uniform and cumulative chord. The tra-
jectory is obtained by interpolating the curve 
through specified points in the three dimensional 
space (see Figure 4). The experimental task was 
to study the differences between methods simu-
lating the sphere illumi nation by the moving 
light-source, where the light-source travels with 
constant velocity.

Example

We prepared a set of input data consisting of 
points shown in Table 1. Those input data points 
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Table 1. Input data for sphere illumination module.

Frame number X Y Z

1 120 120 120

2 120 220 120

3 120 220 320

4 820 620 320

6 220 120 20

(a) (b)

Fig. 4. Light-source trajectory: (a) uniform knot evaluation, (b) chord knot evaluation.

Fig. 5. Frames [8-13] rendered after interpolation for points from Tab 1. Uniform eval-
uation.

Fig. 4. Light-source trajectory: (a) uniform knot evaluation, (b) chord knot evaluation

   a)            b)

Fig. 5.  Frames [8-13] rendered after interpolation for 
points from Table 1. Uniform eval uation
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Table 1. Input data for sphere illumination module.

Frame number X Y Z

1 120 120 120

2 120 220 120

3 120 220 320

4 820 620 320

6 220 120 20

(a) (b)

Fig. 4. Light-source trajectory: (a) uniform knot evaluation, (b) chord knot evaluation.

Fig. 5. Frames [8-13] rendered after interpolation for points from Tab 1. Uniform eval-
uation.
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Fig. 6. Frames [8-13] rendered after interpolation for points from Tab 1. Chord evalu-
ation.

4 Image Segmentation (Computer Vision)

The main goal of the image segmentation module is to present the border line
surrounding a certain area in the picture on the basis of a sequence of points
marked by the user as interpolation points. Each point that is marked by the
user is drawn on the picture in real time and the current shape of the curve is
plotted onto the image. As all of the significant points are marked user closes
the curve by splitting the image into two regions. The user can calculate the
number of pixels within or outside of the region closed by the curve, which is
realized by the Flood Fill Algorithm [2], which counts all points of the area
until it recognizes reaching the border. The border curve (see Eq. (2)) may be
calculated by applying two different knots evaluation modules discussed herein.

4.1 Experiment Concept

In the image segmentation model there are implemented two different knot eval-
uation methods for determining the shape of the curve (see Eqs. (3) and (4)). The
experimental task is to study the impact of the evaluation methods on curve’s
shape and the area of a region bounded by this curve.

4.2 Example

We prepared two input images. Over the first one, we marked points as shown in
Tab. 2 and 3. Over the second one, we marked points as indicated in Tab. 4. For
this set of coordinates we evaluated the shape of the curve applying both knots
evaluation methods. Coordinates for the first and the last points are identical,
as the curve is closed. For both methods we also calculated the area within the
selected region. Algorithms for the calculation of the area based on the Flood

Fig. 6.  Frames [8-13] rendered after interpolation for 
points from Table 1. Chord evalu ation

Table 1. Input data for sphere illumination module

Frame number X Y Z

1 120 120 120

2 120 220 120

3 120 220 320

4 820 620 320

6 220 120 20
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define the position of the light-source, which illu-
minated the object in each of the frames. For this 
set of coordinates we simulated the movement of 
the light-source applying both knot evaluation 
methods (see Eqs (3) and (4)). The trajectories of 
the light-source for both methods are shown in 
Figure 4. More precisely, Figure 4a and 4b pres-
ent the same set of frames, which were an input 
for the interpolation task. However, the images do 
not exactly match, as the scales on these picture 
differ. This difference originates from significant 
differences in coordinates of the estimated points 
on trajectories. Algorithms for Phong illumina-
tion model and spline interpolation are applied in 
exactly the same fashion. As a result we obtained 
two different sequences of images for the same 
frame sequences within the whole resulting set 
of frames. Figue 5 presents frames between 8 and 
13 (row ordered) of the set obtained for a uniform 
evaluation of knots. Figure 6 presents the same 
set of frames obtained for the evaluation of knots 
based on the length of chord.

IMAGE SEGMENTATION (COMPUTER 
VISION)

The main goal of the image segmentation 
module is to present the border line surround-
ing a certain area in the picture on the basis of 
a sequence of points marked by the user as in-
terpolation points. Each point that is marked by 
the user is drawn on the picture in real time and 
the current shape of the curve is plotted onto the 
image. As all of the significant points are marked 
user closes the curve by splitting the image into 
two regions. The user can calculate the number 
of pixels within or outside of the region closed 
by the curve, which is realized by the Flood Fill 
Algorithm [1], which counts all points of the area 
until it recognizes reaching the border. The border 
curve (see Eq. (2)) may be calculated by applying 
two different knot evaluation modules discussed 
herein.

Experiment Concept

In the image segmentation model two differ-
ent knot eval uation methods are implemented for 
determining the shape of the curve (see Eqs (3) 
and (4)). The experimental task is to study the im-
pact of the evaluation methods on curve’s shape 
and the area of a region bounded by this curve.

Example

We prepared two input images. Over the first 
one, we marked points as shown in Table 2 and 3. 
Over the second one, we marked points as indi-
cated in Table 4. For this set of coordinates we 
evaluated the shape of the curve applying both 
knots evaluation methods. The coordinates for the 
first and the last points are identical, as the curve 
is closed. For both methods we also calculated 
the area within the selected region. Algorithms 
for the calculation of the area based on the Flood 
Fill Algorithm [1] with pixel count and spline in-
terpolation are applied in exactly the same way. 
As a result we obtained two different shapes of 
unknown curve and consecutively two different 
sizes of a region bordered by the curve. Figure 
7 presents the curve obtained for selected points 
with the uniform evaluation of knots applied. 
The computed size of the area within the curve 
is 10220 pixels and 1117 pixels for left and right 
canal respectively. Figure 7 presents the curve 
obtained for selected points with chord evalu-
ation of the knots applied. The resulting size of 
the area within the curve was 10540 pixels (left 
canal) and 1366 pixels (right canal). Visibly the 
chord method outperforms the uniform one. The 
same observations originate from a comparison 
of curves bounding the cell, which is presented at 
Figure 8. The computed size of a cell within the 
curve was 44925 pixels using the uniform knot 

Table 2. Input data for image segmentation module: 
left nasal canal

Point 
number 0 1 2 3 4 5 6 7 8 9

X 362 346 344 308 345 348 367 393 392 362

Y 354 359 405 375 318 222 139 325 443 354

Table 3. Input data for image segmentation module: 
right nasal canal

Point number 0 1 2 3 4 5 6

X 418 447 448 407 417 437 418

Y 365 272 232 142 186 248 365

Table 4. Input data for image segmentation module: 
cell image

Point 
number 0 1 2 3 4 5 6 7 8 9

X 402 485 421 375 346 261 255 228 300 402

Y 197 275 420 427 436 385 349 303 204 197
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evaluation method and 46701 pixels using the 
chord knot evaluation method.

TRAJECTORY MODELING (PHYSICS)

The main goal of the trajectory modeling 
module is to present the most accu rate estimation 
of the shape of the trajectory obtained as an im-
age of observed physical process and to provide 
analytical formula for estimated curve. The user 
is expected to mark points over the trajectory. 
Each point that is marked by the user is drawn 
on the picture in real time and the current shape 
of the curve is plotted onto the image. Therefore, 
the user can decide in which moment the whole 

trajectory is covered by the interpolating curve 
and perform the analysis of curve equations. The 
curve can be calculated by applying two different 
knot evaluation modules (i.e. uniform and cumu-
lative chord).

Experiment Concept

As in the trajectory modeling, two different 
knot evalua tion methods are implemented for 
determining the shape of the curve by interpolat-
ing the knots’ values from the sequence of two 
dimensional points. The experimental task is to 
study the differences between the two methods 
to evaluate their impact on the analytical formu-
las obtained for both interpolants (serving as the 
boundary seg menting the image).

Fig. 7.  Nose with area of nasal canals bounded by the curve obtained using (a) uniform 
knot evaluation (b) chord knot evaluation
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(a) (b)

Fig. 7. Nose with area of nasal canals bounded by curve obtained using (a) uniform
knot evaluation (b) chord knot evaluation.

Fig. 8. A picture of call bounded with curves obtained using uniform knot evaluation
(yellow) chord knot evaluation (pink).

Fig. 8.  A picture of call bounded with curves obtained using uniform knot evaluation 
(yellow) chord knot evaluation (pink)
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Fig. 7. Nose with area of nasal canals bounded by curve obtained using (a) uniform
knot evaluation (b) chord knot evaluation.

Fig. 8. A picture of call bounded with curves obtained using uniform knot evaluation
(yellow) chord knot evaluation (pink).

 a)      b)



Advances in Science and Technology – Research Journal  vol. 7 (18) 2013

34

Example

We prepared an input image over which 
points as listed in Table 5 are marked. For this 
set of coordinates we evaluated the shape of the 
curve applying both knot evaluation methods.

Table 5. Input data for trajectory modeling

Point number X Y

0 371 408

1 443 395

2 611 318

3 691 238

For both methods we also calculated the cur-
vature at points {(443, 395), (611, 318)}. The 
calculation is performed as presented below. 
Curvature K(t) for curve γ(t) = (x(t), y(t)) ∈ 

 

 R2 
is defined as:
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5.1 Experiment Concept

As in the trajectory modeling, there are implemented two different knot evalua-
tion methods for determining the shape of the curve by interpolating the knots
values from the sequence of two dimensional points. The experimental task is
to study the differences between two methods to evaluate their impact on the
analytical formulas obtained for both interpolants (serving as the boundary seg-
menting the image).

5.2 Example

We prepared an input image over which there are marked points as listed in Tab.
5. For this set of coordinates we evaluated the shape of the curve applying both

Table 5. Input data for trajectory modeling.

Point number X Y

0 371 408

1 443 395

2 611 318

3 691 238

knots evaluation methods. For both methods we also calculated the curvature in
points {(443, 395), (611, 318)}. The calculation is performed as presented below.
Curvature K(t) for curve γ(t) = (x(t), y(t)) ∈ R2 is defined as:

K(t) =
x′(t)y′′(t)− x′′(t)y′(t)

((x′(t))2 + (y′(t))2)3/2
. (5)

Momentum p of the particle of charge q moving within the magnetic field B
reads as (see [12]; Chapt. 5):

p = (B · q) · r, (6)

where the circle radius r can be estimated by the curvature K:

r =
1

K
. (7)

The analytical formula for S(t) = (S1(t), S2(t)) obtained from spline computa-
tion (see Eq. (1)) by (5) yields K. Since the charge q can be +1 or −1 the latter
does not change the value of the momentum. Hence (with aid of Eqs. (6) and (7))
we obtain: p = B/K. The final unit of the momentum is kg · pixel

s (if the input
value of the magnetic field B was given in T (Tesla)). As a result we obtained two
different shapes of resulting curve and consecutively two different values of curva-
ture. Fig. 9 (a) presents the curve obtained for selected points with uniform eval-
uation of knots applied. The resulting curvature in the point (443, 395) amounted

Momentum p of the particle of charge q mov-
ing within the magnetic field B reads as (see [12]):
 p = (B · q) · r , (6)
where the circle radius r can be estimated by the 
curvature K:
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5. For this set of coordinates we evaluated the shape of the curve applying both
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knots evaluation methods. For both methods we also calculated the curvature in
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Curvature K(t) for curve γ(t) = (x(t), y(t)) ∈ R2 is defined as:

K(t) =
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Momentum p of the particle of charge q moving within the magnetic field B
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p = (B · q) · r, (6)

where the circle radius r can be estimated by the curvature K:
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The analytical formula for S(t) = (S1(t), S2(t)) obtained from spline computa-
tion (see Eq. (1)) by (5) yields K. Since the charge q can be +1 or −1 the latter
does not change the value of the momentum. Hence (with aid of Eqs. (6) and (7))
we obtain: p = B/K. The final unit of the momentum is kg · pixel

s (if the input
value of the magnetic field B was given in T (Tesla)). As a result we obtained two
different shapes of resulting curve and consecutively two different values of curva-
ture. Fig. 9 (a) presents the curve obtained for selected points with uniform eval-
uation of knots applied. The resulting curvature in the point (443, 395) amounted

The analytical formula for S(t) = (S1(t), S2(t)) 
obtained from spline computa tion (see Eq. (1)) by 
(5) yields K. Since the charge q can be +1 or –1 
the latter does not change the value of the mo-
mentum. Hence, (with aid of Eqs (6) and (7)) we 
obtain: p = B/K. The final unit of the momentum 
is kg · pixel/s (if the input value of the magnetic 
field B was given in T (Tesla)). As a result we ob-

Fig. 9. Trajectory based on (a) uniform knot evaluation (b) chord knot evaluation
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to −0, 0015 1
pixel and in the point (611, 318) amounted to −0, 0018 1

pixel . Fig. 9 (b)
presents the curve obtained for selected points with chord evaluation of knots ap-
plied. The resulting curvature in the point (443, 395) amounted to −0, 0003 1

pixel

and in the point (611, 318) amounted to −0, 0011 1
pixel .

(a) (b)

Fig. 9. Trajectory based on (a) uniform knot evaluation (b) chord knot evaluation.

6 Conclusions

Our experiments show that one needs to be very careful while fitting non-
parametric data. A proper knot parameterization, taking into account the geo-
metrical distribution of data points must be selected. The experiments confirm
the flexibility of cumulative chord knot parameterization. The latter is not pre-
served by the näıve blind guess of uniform parameterization.
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tained two different shapes of the resulting curve 
and consecutively two different values of curva-
ture. Figure 9a presents the curve obtained for se-
lected points with a uniform eval uation of knots 
applied. The resulting curvature in point (443, 
395) amounted to –0.0015 1/pixel and in point 
(611, 318) amounted to –0.0018 1/pixel. Figure 
9b presents the curve obtained for selected points 
with ap plied chord evaluation of knots. The result-
ing curvature in the point (443, 395) amounted to 
–0.0003 1/pixel and in point (611, 318) amounted 
to –0,0011 1/pixel.

CONCLUSIONS

Our experiments show that one needs to be 
very careful while fitting non-parametric data. A 
proper knot parameterization must be selected 
with consideration for the geo metrical distribu-
tion of data points. The experiments confirm the 
flexibility of cumulative chord knot parameteriza-
tion. The latter is not pre served by a naive blind 
guess of the uniform parameterization.
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